Наши партнеры

За несколько последних десятилетий биологам удалось составить себе довольно полное представление о структуре, химизме и функциях важнейших клеточных ортанелл. Самая крупная органелла клетки — ядро. Это сферическое тело диаметром 5—10 мкм содержит большую часть генетической информации клетки, закодированной в виде длинных нитей сложного химического соединения — дезоксирибонуклеи-новой кислоты (ДНК). ДНК присутствует в клетке в составе хроматина — сложного вещества, состоящего в основном из отрицательно заряженной ДНК и положительно заряженных белков, принадлежащих к классу гистонов. В неделящейся клетке хроматин образует рыхлую сеть.

К началу деления выявляется истинная природа этой «сети» — хроматин конденсируется и образует дискретные, легко идентифицируемые палочковидные тельца, названные хромосомами, число которых для клеток каждого вида постоянно. В любой клетке растения гороха имеется, например, 14 хромосом — по 7 от каждого из родителей. У человека число хромосом в клетке равно 46, по 23 от матери и от отца. Такое клеточное деление, при котором число хромосом удваивается, так что каждая дочерняя клетка получает двойной набор хромосом, носит название митоза (см. ниже).

Полный двойной набор хромосом называют диплоидным (2 п), а набор, получаемый от каждого из родителей через половые клетки, — гаплоидным (п). Все клетки высшего растения, за исключением гаплоидных половых, как минимум диплоидны. Гаплоидные половые клетки находятся преимущественно в зрелых пыльцевых зернах и в зародышевом мешке семязачатка. В жизненном цикле растения гаплоидный набор" получается из диплоидного в результате редукционного деления, или мейоза , протекающего в материнских клетках микро- и мегаспор, находящихся соответственно в пыльниках и семязачатке цветка. Возникшие таким путем гаплоидные клетки де лятся и дают начало мужским и женским гаметофитам, в которых в конце концов и образуются половые клетки, или газеты, т. е. спермии и яйцеклетки. Когда — при половом размножении— женские и мужские гаметы сливаются в зиготу, происходит восстановление диплоидного числа хромосом, свойственного спорофиту. Прослеживая изменения в числе хромосом и в содержании ДНК, мы видим, что в цветковом растении совершается цикл, в котором диплоидия сменяется гаплоидией, а последующее слияние гаплоидных клеток разного генетического происхождения в новый диплоидный организм порождает новые комбинации генетических признаков.

МИТОЗ

В клетке перед видимым проявлением митотической активности количество хромосомной ДНК удваивается. Митоз начинается, когда хромосомы уже удвоились и видно, что каждая из них состоит из двух рядом лежащих нитей, или двух половинок, так называемых хроматид. Ядрышко и ядерная мембрана исчезают, хромосомы выстраиваются в экваториальной плоскости клетки, и нити веретена, соединяющие экваториальную пластинку с полюсами клетки, растаскивают к противоположным полюсам сестринские хроматиды, которые превращаются теперь в две отдельные, но вполне идентичные хромосомы. Реконструируются типичные интерфазные ядра, в каждом из которых восстанавливается мембрана, ядрышко и сеть хроматина. Вскоре, после того как одно ядро разделилось на два, наступает завершающая стадия клеточного деления — формирование клеточной пластинки, разделяющей клетку пополам в экваториальной плоскости (цитокинез). Собственно митоз длится 1—2 ч, на синтез же ДНК и прочие подготовительные реакции, необходимые для следующего клеточного деления, уходит еще около 6 ч.

МЕЙОЗ

Жизнь растения