Наши партнеры

Почти все крупные организмы состоят из микроскопических единиц, называемых клетками, в которых содержатся еще более мелкие единицы — органеллы. Исследуя сложное строение клеток, биологи иммобилизуют (фиксируют) их при помощи какого-нибудь химического фиксатора, заливают в соответствующую среду — в парафин или пластмассу, приготовляют с помощью микротома тонкие срезы, окрашивают эти срезы различными красителями, дающими возможность выявить те или иные структуры, и затем изучают их либо в световом микроскопе, обеспечивающем тысячекратное увеличение, либо в электронном микроскопе при увеличении приблизительно в миллион раз. Для того чтобы уяснить себе химическую роль и определить характер биологической активности исследуемых структурных единиц, каждую из таких единиц требуется получить в чистом виде и в достаточно больших количествах. С этой целью обычно разрушают большое число клеток, а затем выделяют каждый тип органелл из полученного гомогената в виде осадка, выпадающего при центрифугировании с постепенно возрастающим числом оборотов. Осажденные таким путем органеллы можно затем собрать и подвергнуть анализу, чтобы изучить их химическую природу и выявить свойственную им биохимическую активность.

Растительные клетки диаметром около 50 мкм содержат ядро, в котором находится большая часть наследственной информации клетки. Эта информация хранится здесь в форме дезоксирибонуклеиновой кислоты (ДНК), сосредоточенной в палочковидных структурах, называемых хромосомами. При каждом клеточном делении (митозе) хромосомы делятся, расщепляясь по всей длине надвое, благодаря чему обе дочерние клетки получают одинаковое число хромосом и качественно одинаковую ДНК. Половому воспроизведению предшествует специальное редукционное деление (мейоз), приводящее к появлению гаплоидных клеток, т. е. клеток с вдвое меньшим числом хромосом, чем в обычном диплоидном наборе. Когда эти половые клетки (гаметы) в процессе оплодотворения сливаются в зиготу, диплоидное число хромосом восстанавливается.

Отдельные участки молекулы ДНК — гены — определяют природу клеточных белков. Она закодирована в них посредством специфического расположения четырех видов нуклеотидов, в молекуле которых содержится одно из четырех азотистых оснований: аденин (А), тимин (Т), гуанин (G) или цитозин (С). Три последовательно расположенных нуклеотида определяют, какая из двадцати аминокислот включится в растущую полипептидную цепь. Белки синтезируются на поверхности рибосом, построенных из двух субчастиц и состоящих в основном из рибонуклеиновой кислоты (РНК) и белка. К рибосома» прикрепляются цепи особой информационной, или матричной, РНК (мРНК). Эти цепи мРНК синтезируются на ДНК-матрице в процессе транскрипции и несут в себе основную заключенную: в ДНК информацию, но теперь уже записанную при помощи другого нуклеотидного алфавита, а именно алфавита РНК. Третий тип РНК — это транспортная РНК (тРНК). Транспортная РНК присоединяется к отдельным аминокислотам и переносит их к комплексу рибосома — мРНК, где данная аминокислота включается в процессе трансляции в растущую полипептиднук цепь, состоящую из аминокислот, соединенных пептидными связями.

Многие из синтезируемых белков — ферменты, т. е. специфические катализаторы определенных клеточных реакций. Фермент может быть представлен одним только белком или он может состоять из белка и прикрепленного к нему сравнительно» небольшого кофермента, в состав которого входят определенные металлы или витамины. Одни ферменты содержатся в органеллах, а другие в свободном виде присутствуют в цитоплазме клетки.

Растительные клетки окружены полужесткой клеточной стенкой, построенной в основном из целлюлозы, но содержащей также различные гемицеллюлозы, желеобразные пектиновые вещества (скрепляющие клетки друг с другом), лигнин (в-одревесневших тканях) и суберин (в клетках коры).

Жизнь растения