Наши партнеры

Одна из интригующих особенностей циркадных ритмов — то, что длина периода в широких пределах практически не зависит от температуры. С функциональной точки зрения это неудивительно, так как любые часы были бы плохим измерителем времени, если бы скорость их хода зависела от таких внешних факторов, как колебания температуры! И все же трудно представить себе биологический механизм компенсации температуры; поэтому число принципиальных схем, которые логически могли бы быть предложены для объяснения ритмов, ограничено. Так как большинство метаболических реакций сильно зависит от температур, в одной из теорий предполагается, что в часах есть два разных процесса, подверженных влиянию температуры, один из которых при ее повышении ускоряется, а другой замедляется. В результате этой внутренней компенсации скорость хода часов может быть независимой от температуры.

Другая теория отводит главную роль липидам в мембране. Если липиды содержат жирные кислоты с длинной цепью, которые различаются по длине, а также по числу и положению двойных связей, то степень насыщенности и длина цепей жирных кислот могут регулировать текучесть мембраны. Более короткие цепи и ненасыщенность понижают температуру затвердевания жидких жиров. Изменения в жирных кислотах мембран происходят in situ в ответ на изменения температуры, способствуя поддержанию относительно постоянной текучести мембран в широком диапазоне температур. Некоторые исследователи полагают, что изменения в длине цепей и в степени насыщенности мембранных липидов происходят и на протяжении каждого суточного цикла и составляют часть механизма «часов». Если это так, то нам будет понятно, каким образом измерение времени могло бы быть относительно независимым от температуры.

Действительно ли ритмы эндогенны?

Некоторые авторы до сих пор полагают, что циркадные ритмы в действительности регулируются не эндогенными, а какими-то еще не выявленными внешними факторами. Против этого представления наиболее убедительно свидетельствуют следующие факты: 1) циркадные ритмы сохраняются и у организмов, быстро обращающихся вокруг Земли в искусственных спутниках; 2) при постоянных внешних условиях продолжительность периода не равна в точности 24 часам. В естественных условиях точная периодичность «навязывается» периодичностью в окружающих условиях. Это означает, что «естественный» период несколько изменяется под действием какого-то внешнего сигнала, «подгоняющего» внутренний ритм к ритму окружающей среды. У большинства организмов ритмы корректируются суточными изменениями освещенности и температуры.

Пигменты, служащие фоторецепторами для корректировки ритма, у разных организмов различны. У многих животных и некоторых растений это пигмент, поглощающий синий свет, но у большинства растений такую роль играет фитохром. Ритмы в этих растениях корректируются превращением Фк в Фдк. Можно было бы ожидать ежедневных взаимопревращений Фк и Фдк в растительной ткани вскоре после восхода и перед заходом солнца. Как видно, отношение энергии красного света к энергии дальнего красного света в солнечных лучах около земной поверхности составляет днем 1,3, но при заходе «олнца быстро падает до 0,7. Это ведет к небольшому снижению содержания Фди, которое и дальше продолжает снижаться в течение ночи в результате темнового превращения ФдК в Фк. Утром, вскоре после восхода солнца, уровень ФДк по мере увеличения упомянутого соотношения энергий опять повышается. Из этого' понятно, каким образом повышение уровня Фдк с восходом солнца могло бы «подстраивать» биологические часы.

Взаимодействие фитохрома с биологическими часами

Жизнь растения