Наши партнеры

Поскольку большая часть присутствующей в клетке воды находится в вакуоли, мы начнем анализ проблемы транспорта воды с рассмотрения того пути, который молекуле воды требуется преодолеть для того, чтобы попасть в вакуоль клетки. Вода должна пройти сквозь две мембраны (плазмалемму и тонопласт) и через лежащую между ними цитоплазму. Мы мало знаем о различиях в способности этих трех структур пропускать воду, а потому обычно все три структуры рассматриваются совместно как единый мембранный барьер.

Для того чтобы понять, каким образом вода проходит через мембрану, представим себе,, что клетка, в вакуоли которой содержатся соли, сахара, аминокислоты и прочие вещества, помещена в сосуд с дистиллированной водой (рис. 6.1). Согласно молекулярно-кинетическои теории молекулы всех веществ находятся в состоянии быстрого хаотического движения, скорость которого зависит от энергии этих молекул Средняя скорость их движения определяется температурой (и служит, в сущности, ее мерой). Поскольку молекулы воды малы и проходят через клеточные мембраны намного быстрее, чем молекулы других веществ, мы можем простоты ради ограничиться рассмотрением перемещения только молекул воды. Молекулы эти диффундируют во всех направлениях: в клетку и из клетки, в различные клеточные органеллы и из них. Мы знаем, однако, что вакуоль содержит значительные количества различных растворенных веществ. Молекулы этих растворенных веществ ослабляют связи между молекулами содержащейся в вакуоли воды, притягивая их к себе и тем самым уменьшая суммарный поток воды из клетки наружу. В известном смысле растворенные вещества снижают активность молекул воды, находящихся в клетке. Как следствие этого кинетическая энергия воды в вакуоли ниже, чем относительно более чистой воды вне клетки. Сказанное означает, что снаружи вакуоли о любой участок ее мембраны ударяется в единицу времени больше молекул воды и большее их число проникает на этом участке внутрь, нежели выходит из нее. В результате этой быстрой неравномерной двусторонней диффузии молекул воды через мембрану вакуоли объем вакуоли увеличивается и создается тургор — содержимое клетки прижимается к ее стенке.

Диффузия воды через полупроницаемую мембрану называется осмосом; концентрация растворенных веществ в вакуоли служит мерой максимальной способности клетки поглощать воду. Энергетический уровень молекул данного вещества, отражаемый скоростью их диффузии, называют химическим потенциалом этого вещества. Здесь, однако, мы говорим только о воде и потому будем пользоваться специальным, предназначенным именно для этого частного случая термином: водный потенциал. Водный потенциал (-ф) характеризует способность воды диффундировать, испаряться или поглощаться. Он имеет размерность энергии, деленной на объем (что совпадает с размерностью давления), и его величину выражают обычно в атмосферах или барах (1 бар=0,987 атм). В действительности мы не можем измерить энергию молекул воды, например, в лабораторном стакане, поэтому условно за нуль принят г|з чистой воды при нормальных условиях (стандартных температуре и давлении). Измерить возможно только разность энергий молекул воды, находящихся в разных условиях. Чем ниже энергия молекул воды, тем ниже и водный потенциал; поскольку я|э чистой воды принят равным нулю, с увеличением концентрации растворенных веществ -ф становится все более отрицательным. При осмосе молекулы растворенного вещества снижают энергию молекул воды, так что раствор имеет более отрицательный потенциал, чем чистая вода.

Молекулы воды перемещаются всегда в направлении от более высокого водного потенциала к более низкому, подобно тому как вода течет вниз, переходя на все более низкий энергетический уровень. На водный потенциал раствора влияют помимо растворенных веществ и другие факторы, например давление; поэтому ту компоненту водного потенциала, которая определяется присутствием растворенного вещества, обозначают особым термином — осмотический потенциал (яря). Осмотический потенциал раствора связан прямой зависимостью с концентрацией растворенного вещества. С увеличением этой концентрации осмотический потенциал становится все более отрицательным. Если 1 моль (т. е. число граммов вещества, равное его молекулярной массе) какого-нибудь недиссоциирую-щего вещества, например сахарозы, растворить в 1 л воды, т. е. приготовить моляльный раствор, то осмотический потенциал такого раствора при нормальных условиях будет равен 22,7 бар. В менее концентрированных растворах осмотические потенциалы соответственно менее отрицательны.

В том случае, когда раствор отделен от чистой воды полупроницаемой мембраной, вода поступает в раствор и вследствие этого возникает давление (осмотическое давление), равное по величине, но противоположное по знаку исходному осмотическому потенциалу. Раствор обладает потенциалом, за счет которого возникает такое давление, и его можно обнаружить, если, например, этот раствор поместить в прибор, называемый осмометром (рис. 6.2). Численно осмотический потенциал равен тому давлению, которое необходимо приложить к раствору в осмометре для того, чтобы предотвратить поступление в него воды.

Клетка, содержащая в ограниченном клеточной стенкой пространстве окруженный мембраной раствор (т. е. вакуоль), представляет собой, в сущности говоря, осмометр. Если такую клетку погрузить в чистую воду, то в нее начнет поступать вода. В отсутствие противодавления клеточной стенки поступление воды в клетку определяется водным потенциалом клетки (чкл), в начальный момент времени равным осмотическому потенциалу (г|зп) раствора, заполняющего вакуоль. Однако с проникновением воды в вакуоль ее объем увеличивается, вода разбавляет клеточный сок и клеточная стенка начинает испытывать давление. До каких пор будет вода поступать в вакуоль? Если бы это поступление зависело только от осмотического потенциала, то теоретически оно могло бы продолжаться до бесконечности. Однако в действительности с увеличением объема вакуоли цитоплазма прижимается к клеточной стенке и возникает тургорное давление, а вместе с ним и равное ему по величине противодавление клеточной стенки на клеточное содержимое.; Под потенциалом давления (т|)д) понимают обычно именно противодавление клеточной стенки, но этот термин может обозначать и тургорное давление (равное первому по величине, но противоположное ему по знаку). Когда г|зд достигнет достаточно большой величины, дальнейший приток воды в вакуоль прекращается. Устанавливается динамическое равновесие, при котором суммарный поток воды равен нулю, т. е. количество воды в вакуоли не изменяется, хотя молекулы воды и продолжают быстро перемещаться через мембрану в обоих направлениях. При этом положительный потенциал давления полностью уравновешивает отрицательный осмотический потенциал и клетка перестает поглощать воду; в таком состоянии ее водный потенциал равен нулю.

В любой данный момент времени водный потенциал клетки определяется разностью между потенциалом давления и осмотическим потенциалом. Если дать клетке возможность в дистиллированной воде достичь максимального тур гор а, то она будет поглощать воду до тех пор, пока гд не сравняется с г|зя, т. е. фил не станет равным нулю. После этого она более уже не сможет поглотить воду ни из какого раствора. Не сможет она и отнять ее от другой клетки. Если рядом окажутся две клетки с разными г|зкл, то вода через клеточную стенку будет переходить из клетки с более высоким (менее отрицательным) г|зКл в клетку с более низким (более отрицательным) т)экл.

Рассмотрим теперь поступление воды в вакуоль и из вакуоли растительной клетки in situ (т. е. в растении). Вакуоль и окружающий ее протопласт заключены внутри клеточной стенки, через которую вода диффундирует свободно. (Клеточная стенка в этом смысле напоминает фильтровальную бумагу, которая тоже состоит из целлюлозы.) Клеточная стенка насыщена водой до тех пор, пока влажность почвы достаточна, а транспирация не слишком интенсивна. В этих условиях г|з в области клеточной стенки выше, чем в вакуоли, и суммарный поток воды направлен внутрь, в вакуоль. Иная картина наблюдается при недостатке влаги: в такие периоды в клеточных стенках может ощущаться водный дефицит и, следовательно, ф в этой области окажется ниже, чем в вакуоли. В результате вода будет оттекать из вакуоли (суммарный поток воды направлен наружу). Клетки начинают терять тургор; вследствие снижения тургорного давления они становятся вялыми и мягкими. Если из-за очень большой потери воды тургорное давление упадет до нуля, то лист завянет совсем; дальнейшая потеря воды приведет к разрыву протопластов и к гибели клеток, хотя, как мы увидим ниже, растение может избежать резкой потери воды, быстро закрыв свои устьица в ответ на недостаток влаги. Впоследствии, если клетки остались интактными, они вновь смогут поглотить воду и восстановить свой тургор; это произойдет либо при получении растением достаточного количества воды, либо в ночное время, когда транспирация практически прекращается и испарение вполне компенсируется поглощением воды из почвы.

г|з — водный потенциал; равен нулю для чистой воды; равен нулю или отрицателен для клеток (г|зКл).

г|зп — осмотический потенциал; всегда отрицателен.

фд—потенциал давления; обычно положителен в живых клетках (т. е. в клетках, содержимое которых находится под давлением), но отрицателен в клетках ксилемы (в которых создается натяжение воды).

В искусственных условиях удается наблюдать и более сильное сокращение протопластов. Если мы поместим кусочек ткани в раствор более концентрированный, чем вакуолярный сок,, то отток воды из клеток будет продолжаться до тех пор, пока протопласты не отделятся от клеточных стенок и не сожмутся в комок в середине клетки. Наружный раствор легко проходит через клеточную стенку, которая практически не препятствует движению воды, и заполняет пространство между клеточной стенкой и сократившимся протопластом. Клетку в таком состоянии называют плазмолизированной . Если плазмолиз не слишком сильный и не слишком длительный, то клетка, после того как ее перенесут в воду, восстанавливает свой обычный тургор. В растительных клетках, испытывающих недостаток воды в воздушной среде, плазмолиза как такового не происходит, поскольку отсутствует свободный раствор, который мог бы заполнить пространство между протопластом и клеточной стенкой; в природе чрезмерный водный дефицит, по всей вероятности, приводит к разрыву и гибели клеток.

Зная для данной клетки, можно предсказать, как она будет вести себя по отношению к тому или иному раствору, т. е. будет ли она поглощать воду из него или, напротив, отдавать ему воду. Для экспериментального определения гЬкл отдельные клетки или кусочки ткани погружают в ряд растворов какого-нибудь вещества, например сахарозы, с постепенно возрастающей концентрацией. Водный потенциал раствора, в котором вес (или объем) клеток не увеличится и не уменьшится, и даст нам величину ркл. Этим же методом, т. е. погружением клеток в ряд растворов с постепенно возрастающей концентрацией, можно определить, поскольку осмотический потенциал того наружного раствора, в котором начинается плазмолиз (тургор равен нулю, т. е. a| = 0), равен внутреннему осмотическому потенциалу. Начальный плазмолиз — это то состояние, при котором протопласт просто примыкает к клеточной стенке и кое-где начинает слегка от нее отставать. Поэтому г|зд определяют, просматривая под микроскопом срезы тканей, помещенные в упомянутый ряд растворов, и отмечая раствор, осмотический потенциал которого оказался как раз достаточным, чтобы вызвать плазмолиз половины клеток. Этот метод определения осмотической концентрации клеточного сока, старый и несколько примитивный, все же, по-видимому, можно считать наилучшим. В большинстве других методов требуется выжимать клеточный сок, а эта процедура, вероятно, изменяет содержимое вакуоли. Потенциал давления г]эд можно измерить в крупных клетках нитчатой водоросли Nitella, вводя в них специальный микроманометр, предназначенный для таких измерений. Для высших растений измерить г]зд труднее, и потому его обычно определяют как разность между фкл и ф. В целых побегах клеточный водный потенциал можно измерить при помощи описанного ниже прибора.

Жизнь растения