Наши партнеры

История открытия фитохрома в начале 50-х годов группой исследователей министерства сельского хозяйства США составляет одну из самых волнующих глав в истории изучения растений. Эта история началась примерно на 30 лет раньше с работы двух экспериментаторов, имевших дело с табаком. У. Гарнер и X. Аллард пытались размножить мутантный тип крупнолистного табака — Мэриленд Маммот, который случайно вырос в единственном экземпляре среди других табачных растений. В определенное время исходный тип обильно зацвел, а Мэриленд Маммот — нет. Желая получить семена этого ценного нового типа и боясь, что растение может не зацвести до осенних холодов, ученые решили перенести его в теплицу. Однако, несмотря на все принятые меры, растение упорно оставалось в вегетативном состоянии примерно до середины декабря, когда на нем появились зачатки цветков — через несколько месяцев после того, как у нормальных растений успешно завершилось образование семян.

Анализ разнообразных факторов, которые могли бы быть ответственны за это необычное поведение, привел Гарнера и Алларда к неизбежному выводу, что растение зацвело под влиянием очень малой длины дня в северном полушарии перед рождеством. Они установили, что цветение можно вызвать переносом растений Мэриленд Маммот в специальные камеры с искусственно сокращенным световым днем. Табак Мэриленд Маммот, зацветающий лишь в том случае, если длина дня меньше некоторой критической величины, стали называть растением короткого дня. К этой категории относятся и многие другие растения, в том числе некоторые формы сои, хризантем и пуансеттии. Напротив, шпинат и некоторые зерновые зацветают только тогда, когда длина дня превышает определенную критическую величину; это растения длинного дня. Наконец, имеется группа растений (томаты и др.), цветение которых не зависит от длины дня (нейтральные растения). Реакция растений на длину дня называется фотопериодизмом.

Критический фотопериод для разных видов и даже сортов растений как короткого, так и длинного дня значительно варьирует. Он составляет 14 ч для Билокси — короткодневного сорта сои, растущего на широте 35°, тогда как сорт Баторавка, обычно выращиваемый на широте 45° и выше, будет цвести даже при непрерывном освещении. Эти различия в критическом фотопериоде играют важную роль в распределении растений на земном шаре.

В годы, последовавшие за открытием фотопериодизма, стадо ясно, что многие растения реагируют на продолжительность непрерывной темноты, а не на длину светлого периода. Иными словами, так называемое растение короткого дня — это на самом деле растение «длинной ночи». Для заложения цветочных бугорков ему необходима определенная минимальная продолжительность темноты, не прерываемой светом. Аналогичным образом растение длинного дня может быть в действительности растением «короткой ночи»: оно будет цвести лишь в том случае, если ночной период не длиннее некоторого максимума.

Эффективный период темноты для короткодневного растения можно сделать неэффективным путем простой уловки — достаточно немного укоротить его (всего на несколько минут) или прервать в середине вспышкой слабого света. Это говорит о том, что растение может «измерять» продолжительность темноты с точностью до нескольких минут и что фотопериодизм связан с работой необычайно чувствительной оветовоспринимающей системы. Короткодневное растение дурнишник цветет при режиме 15 ч света + 9 ч темноты, но не будет цвести, если темный период составляет 8,5 ч или же 9-часовой темный период прерывается коротким световым периодом. Всего лишь один подходящий период темноты может привести к цветению, даже если последующие темные периоды недостаточно длинны. Этот феномен известен как фотопериодичёская индукция. У многих растений длинного дня имеет место аналогичный, но обратно направленный феномен: прерывание слишком длинного темного периода вспышкой света приводит к индукции и к заложению цветков. Таким образом, растения длинного и короткого дня, видимо, обладают сходным фотопериодическим механизмом, но последний каким-то образом действует в разных направлениях.

Короткодневный сорт сои Билокси так чувствителен к свету, что индуктивный эффект длительных темновых периодов можно снять даже минутным облучением с помощью ламп накаливания (без фильтра) в середине ночи. По этой причине X. Бортвик и С. Хендрикс с сотрудниками пришли к выводу, что это растение было бы идеальным объектом для выяснения вопроса о том, какие длины волн наиболее эффективно предотвращают инициацию цветения; а эти сведения в свою очередь могли бы помочь в идентификации фоторецепторного пигмента, участвующего в контроле цветения. Поэтому они определили спектр действия для данного процесса, используя большой спектрограф для одновременного облучения групп растений светом с разной длиной волны. Полученные спектры действия для ингибирования цветения короткодневных растений сои и дурнишника и для активации цветения длиннодневных растений Hordeum (ячмень) и Hyoscyamus (белена) оказались поразительно сходными. Во всех случаях был обнаружен максимум активности в красной области спектра (около 660 нм) при почти полной неэффективности других областей. Сходство спектров позволяло считать вероятным, что зацветание растений как короткого, так и длинного дня контролируется одним и тем же пигментом. Анализ спектра действия привел к предположению, что поглощающий пигмент сходен с пигментом водорослей фикоцианином, который родствен желчным пигментам животных. К сожалению, такого рода пигментов авторы в своих подопытных растениях не нашли и поэтому стали вести поиски в другом направлении.

Давно было известно, что свет сильно влияет на прорастание некоторых семян. Например, увлажненные семена салата сорта Гранд Рапиде прорастают плохо в полной темноте, но быстро и хорошо при экспонировании на свету в течение нескольких минут. Оказалось, что спектр действия для этого эффекта сходен со спектром действия для цветения! Аналогично этому проросток гороха, выращенный в полной темноте, имеет очень длинный, тонкий непигментированный стебель, искривленный апикальный изгиб и почти не распустившиеся листья. Если такой этиолированный проросток выставить лишь на короткое время на свет, листья после этого разворачиваются, изгиб начинает распрямляться и удлинение стебля замедляется. Спектр действия и здесь фактически идентичен спектру для цветения. Приходится заключить, что такие разнородные реакции, как прорастание семян, изменение этиолированного проростка (его «деэтиоляция») и индукция цветения, регулируются одним и тем же пигментом-рецептором.

Но что это за пигмент? Ответ был найден в результате Новой интерпретации старых опытов по прорастанию семян салата, проведенных в 1935 г. Л. Флинтом и Э. Мак-Алистером. Эти исследователи показали, что прорастание семян салата Гранд Рапиде не только стимулируется красным светом, но также подавляет светом дальней красной области спектра с длиной волны 700 нм.

Затем Бортвик и Хендрикс изучили влияние дальнего красного света на реакции цветения и диэтиолирования, вызываемые красным светом. И здесь была обнаружена «обратимость К — ДК». Это позволило предсказать, что существует один активный пигмент в двух взаимно фотообратимых формах, одна из которых образуется под действием красного, а другая — дальнего красного света. Обратимые, сдвиги поглощения при 660 и 730 нм вслед за облучением соответственно красным и дальним красным светом дали возможность легко выявлять пигмент и измерять его количество, особенно в этиолированных растениях, где экранирование хлорофиллом не создает затруднений (см. ниже). Вскоре пигмент был обнаружен в экстрактах растений, сконцентрирован, очищен, подвергнут анализу и частично охарактеризован. Его назвали фитохромом (от греческих слов, означающих «растение» и «краситель»). Его две формы были названы соответственно Фк (фитохром. поглощающий красный свет) и Фдк (поглощающий дальний красный свет). Фитохром синтезируется в форме Фк. Поэтому этиолированные проростки содержат Фк, а не Фдк. Облучение красным светом превращает большую часть фитохрома в Фдк — физиологически активную форму, тогда как последующее облучение дальним красным светом превращает Фдк обратно в Фк.

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ФИТОХРОМА

Для определения содержания фитохрома в растительной ткани можно использовать двухволновой спектрофотометр.

1. Кювету наполняют кусочками растительной ткани (или экстрактом из них) и облучают красным светом (660 нм) высотой интенсивности. Примерно минутного актиничного облучения достаточно для предельной степени превращения Фк в Фдк.

2. Поглощение (П), называемое также оптической плотностью (ОП), измеряют попеременно при 660, 730, 660 нм и т. д. измеряющий пучок имеет малую интенсивность, а каждое облучение настолько кратковременно, что не вызывает значительного превращения пигмента.

3. Затем ткань в кювете облучают дальним красным светом (730 нм) высокой интенсивности. Продолжительность актиничного облучения должна быть достаточна для предельной степени превращения Фда в Фк.

4. Повторяют этап 2.

[ОП при 660 нм — ОП при 730 нм] после облучения актиничным светом обозначают АОП

5. ДОПббо—ДОП7зо=Л(ДОП) есть мера содержания фитохрома в растительной ткани.

Поскольку в ткани, выращенной в темноте, весь фитохром предоставлен в форме Фк, фактически любое облучение повышает уровень Фдк. Исключение составляет зеленый свет с длиной волны 500—550 нм, так как ни Фк, ни Фдк существенно не поглощают этих лучей. Поэтому в опытах с фитохромом зеленый свет используют как «безопасный».

Превращения ФкчФдк действуют как метаболический механизм, включающий и выключающий определенные реакции. Это переключение косвенно регулирует множество биофизических, биохимических, гистологических и морфологических процессов в растениях. Многие из наступающих изменений происходят после первого воздействия света на этиолированный проросток, когда некоторая часть его фитохрома переходит в форму ФДк. Эти изменения, обобщенно называемые деэтиоляцией, помогают растению адаптироваться к свету. При этом изменяется активность многих ферментов и содержание растительных гормонов, из этиопластов развиваются хлоропласты, происходит синтез хлорофилла, каротиноидов и антоциановых пигментов из предшественников. После позеленения этиолированных проростков система фитохромов продолжает влиять на рост и развитие растения в течение всей его жизни. Взаимопревращения Фк и Фдк не только влияют на индукцию цветения у растений как короткого, так и длинного дня, но и участвуют также в регулировании клубнеобразования, покоя, опадения листьев и старения. Однако эффект превращений фитохрома в растениях, выросших на свету, зависит также от времени воздействия света. Чувствительность таких растений к определенным формам фитохрома имеет ритмический характер. Эта интересная проблема будет рассмотрена в следующей главе.

Жизнь растения