Наши партнеры

Растения, использующие только путь Кальвина — Бенсона,. принято называть С3-растениями, поскольку первый стабильный продукт фотосинтеза представлен у них трехуглеродным соединением ФГК. У С3-растений значительная часть фиксированного при фотосинтезе углерода тут же теряется вследствие распада продуктов фиксации и выделения СО2 в реакциях, идущих с потреблением кислорода. Процесс этот происходит только на свету, и потому он был назван фотодыханием. Фотодыхание открыто сравнительно недавно. Объясняется это позднее его открытие тем, что выделение С02 при дыхании на свету маскируется поглощением С02 в процессе фотосинтеза. Первоначально предполагалось, что и в количественном отношении, и в смысле используемого пути световое дыхание идентично дыханию в темноте, однако затем выяснилось, что на свету выделяется больше СО2. Это удалось установить в результате тщательных измерений газообмена непосредственно вслед за включением или выключением света. Наблюдающееся на свету дополнительное выделение СО2 объясняется, как выяснилось, не усилением нормального процесса дыхания, а добавлением в этих условиях совершенно иного пути — фотодыхания.

Фотодыхание обусловлено тем, что в присутствии кислорода действующий в цикле Кальвина фермент RuBP-карбоксилаза может присоединять к RuBP не только СО2, но и О2, выполняя таким образом роль RuBP-оксигеназы. Присоединение кислорода к молекуле RuBP приводит к такому ее расщеплению, при котором вместо двух молекул ФГК, содержащих по три атома углерода, образуется одна молекула фосфогликолевой кислоты (содержащей два атома углерода) и одна молекула ФГК. Таким образом, в оксигеназной реакции не происходит никакой •фиксации СОг. Фосфогликолат позднее дефосфорилируется и превращается в гликолат, который поступает из хлоропласта в другую органеллу, также окруженную мембраной, в пероксисому. В пероксисоме гликолат вступает в реакцию с кислородом, в результате чего образуются глиоксилат и перекись водорода. Перекись тут же распадается на воду и кислород, а глиоксилат превращается в аминокислоту глицин. Затем уже вне перокеисомы, а именно в митохондриях, из глицина образуется аминокислота серии (которая может использоваться непосредственно в белковом синтезе или претерпевать дальнейшие превращения, ведущие к образованию глюкозы). При этой реакции из двух молекул глицина образуется одна молекула серила и одновременно выделяется СО2. Таким образом, какая-то часть углерода, фиксированного в цикле Кальвина — Бенсона, теряется без того, чтобы растение могло хоть как-то этот углерод использовать. Смысл фотодыхания нам пока не ясен, но, может быть, его полезная функция (если таковая существует) связана с тем, что оно играет необходимую роль в метаболизме азотистых соединений или в их переносе из одной органеллы в другую, обеспечивая превращение гликолата в глицин. Возможно также, что фотодыхание возникло на ранних этапах существования Земли с развитием фотосинтеза. В то время в земной атмосфере, очевидно, не было кислорода, поэтому фосфогликолат не мог образовываться под действием RuBP-карбоксилазы. Однако, когда кислород, выделявшийся в процессе фотосинтеза, начал накапливаться в атмосфере, в растениях, возможно, началось накопление фосфоглнколата, и, может быть, фотодыхание возникло в процессе эволюции как средство, позволявшее ограничить это накопление.

Не у всех растений фотодыхание в равной мере интенсивно. Заметно колеблется также и эффективность, с которой разные виды растений в процессе фотосинтеза фиксируют СО2. Интенсивность фотосинтеза у субтропических злаков, например у кукурузы, сахарного тростника и сорго, вдвое с лишним выше, чем у шпината, пшеницы, риса и бобов. Растения, более эффективно осуществляющие этот процесс (их называют С4-растениями; о них мы еще будем говорить ниже), используют иной путь усвоения СО2 в обкладках сосудистых пучков листа (так называемый d-метаболизм), и мы здесь этот путь вкратце обсудим. К менее эффективной группе принадлежат все С4-растения; они могут терять при световом дыхании до половины всего углерода, ассимилированного в процессе фотосинтеза.

Жизнь растения